Гидравлический расчет для подбора трубопроводов: методы проведения

Расчет системы отопления (Часть 5 — Гидравлический расчет трубопроводов)

Гидравлический расчет является одним из важных и сложных процессов планирования или проектирования системы отопления. Расчет выполняется после оставления теплового баланса, определения мощности радиаторов с расстановкой их по помещениям, нанесения на планы и прорисовкой на них планируемых трубопроводов.

В результате гидравлических расчетов определяются диаметры трубопроводов в зависимости от планируемых материалов, удельные потери давления на один метр длины, полные потери давления в сети трубопроводов и в подобранном оборудовании (котлы радиаторы и пр. элементы).

Обратите внимание

Полный гидравлический расчет без соответствующей подготовки и знания процессов гидравлики выполнить достаточно проблематично, но так же как для определения тепловых потерь жилого дома в данном расчете возможно воспользоваться укрупненными показателями.

При этом следует вести проверку расчетов системы отопления на соответствие нормативным данным.

Гидравлический расчет в системах с естественной циркуляцией

В случае если система отопления планируется с естественной циркуляцией, то можно воспользоваться следующими рекомендациями, неоднократно проверенными на практике:

  • Длина горизонтальных участков трубопроводов не должна превышать 20 метров.
  • Магистральная труба от котла отопления закладывается диаметром порядка 50 миллиметров, что соответствует 2 дюймам.
  • Такой же диаметр трубы отопительной сети закладывается на каждые 35 секций алюминиевых радиаторов исходя из минимальной мощности и скорости движения теплоносителя.
  • Для ответвления, суммарной тепловой мощностью соответствующей количеству секций радиаторов от 25 до 35, диаметр трубы проектируется равным 40 мм или 1 ? дюйма, 10-25 секций – труба условным проходом 25 мм (1 дюйм), до 10 секций – 20 мм (3/4 дюйма).
  • На каждые 10 метров прямого участка без установленных радиаторов к расчетному диаметру необходимо добавлять еще 1/2 дюйма. Это необходимо для снижения скорости теплоносителя и потерь давления на трение.

Гидравлический расчет в системах с принудительной циркуляцией

В системах с принудительной циркуляцией диаметр трубопровода напрямую зависит от рекомендуемых скоростей движения теплоносителя, шероховатости внутренней поверхности трубопроводов, то есть выбранного материала трубопроводов. Полимерные и медные трубы имеют меньшую шероховатость чем у стальных трубопроводов, однако, внутренние диаметры следует выбирать такими же.

При подборе полимерных (металлопластиковых или полипропиленовых) трубопроводов следует обращать внимание, что производители всегда указывают внешний размер и толщину стенки, которая может отличаться в зависимости от рабочего или предельного давления.

В процессе гидравлических расчетов следует пользоваться только внутренними диметрами трубопроводов и соответствия их условному проходу стальных труб.

В сравнении с гравитационными системами диаметры труб в насосных схемах значительно меньше, так как устанавливаемый насос подбирается в зависимости от потерь. То есть система с механической циркуляцией может быть какой угодно конфигурации и радиусом действия.

Для предотвращения повышения шума от работы отопительной системы, скорости движения теплоносителя ограничиваются:

  • Для трубопроводов, укладываемых в жилых помещениях, Ду (условным диаметром) 10 мм – не более 1,5 м/с,
  • для Ду 15 мм – не более 1.2 м/с,
  • для Ду 20 мм – не более 1 м/с,
  • для остальных помещений – до 1,5 м/c.

Исходя из принятых максимальных скоростей движения теплоносителя и опыта расчета стандартных небольших систем отопления жилых домов, можно вывести укрупненные зависимости подбора диаметров труб.

Подбор диаметров труб

В предыдущих разделах было рассмотрено на примере как следует выполнять теплотехнический расчет и составлять тепловой баланс по помещениям.

Исходя из полученной мощности радиаторов и составленной схемы трубопроводов, определяется нагрузка каждого участка трубопроводов, а исходя из зависимости Q (кВт)= G воды (л/мин) определяется расход воды на каждом участке. Это выражение справедливо при температурном перепаде (между подачей и обраткой) в системе отопления 15 °С.

Согласно полученным расходам на каждом участке системы отопления по Таблице №1 выполняется определение диаметров участка трубопроводов. Следует помнить, что размер указан для стальных трубопроводов, то есть условный проход, что приблизительно соответствует аналогичному ВНУТРЕННЕМУ диаметру полимерных трубопроводов.

Таблица №1

Расход, л/мин
5,7
15
30
53
83
170
320
Условный проход мм 15 20 25 32 40 50 65
Дюймы 1/2 3/4 1 1.1/4 1.1/2 2 2.1/2

Внутренний диаметр полимерных труб можно узнать из таблицы №2.

Таблица №2

Показатели
Наружный диаметр
16 20 26 32 40
Внутренний диаметр, мм 12 16 20 26 32
Толщина стенки трубы, мм 2,0 2,0 2,0 3,0 2,5
Объем жидкости в 1 м. п. трубы, л 0,113 0,201 0,314 0,531 0,855

Данный расчет является укрупненным, подлежит для определения диаметров трубопроводов системы отопления только для небольших жилых зданий преимущественно с коллекторной системой отопления и установленными терморегулирующими вентилями на каждом радиаторе.

Данный расчет не определяет удельные потери в трубопроводах или неувязки на участках сети для определения величины разбалансировки.

Для жилых домов площадью свыше 100 м2 с большим количеством циркуляционных колец или при наличии водяных теплых полов за гидравлический расчет (как и теплотехнический) следует доверять только специалистам.

Важно

В предыдущих разделах цикла статей по расчету систем отопления мы составили тепловой баланс для углового помещения площадью 8,12м2 и определили, что будет установлено два радиатора суммарной мощностью 1 167 Вт, то есть каждый по 583,5 Вт.

Так как исходя из планировки и места расположения котла в данном случае удобнее всего предусмотреть коллекторную систему отопления с выводом от коллекторного шкафа ветки на каждый радиатор, тогда расход теплоносителя на каждом отрезке равен 0,574 л/мин, а диаметр подводящего трубопровода Ду=15 мм.

Источник: https://santech-info.ru/otoplenie/gidravlicheskij-raschet.html

Большая Энциклопедия Нефти и Газа

Cтраница 1

Проведение гидравлических расчетов РїСЂРё промывке Рё цементировании скважин сопряжено СЃ трудностями определения коэффициента гидравлических сопротивлений РІ системе, так как сложно учесть конфигурацию ствола скважины, эксцентричность положения труб РІ кольцевом пространстве Рё изменение реологических параметров закачиваемых жидкостей РІ зависимости РѕС‚ условий среды Рё продолжительности операций. Существующие методы Рё средства РЅРµ позволяют СЃ достаточной ( для практических целей) точностью учесть Рё оценить РёС…, хотя изучению реологических свойств тампонажных растворов методами капиллярной вискозиметрии уделяется РјРЅРѕРіРѕ внимания.  [1]

Проведение гидравлического расчета является важнейшим разделом РїСЂРё проектировании трубопроводов Рё РёС… эксплуатации.  [2]

Проведение гидравлических расчетов РїСЂРё промывке Рё цементира-вании скважин сопряжено СЃ трудностями определения значений коэффициента гидравлических сопротивлений РІ системе, так как практически сложно учесть конфигурацию ствола скважины, эксцентричность положения труб РІ кольцевом пространстве Рё изменение реологических параметров закачиваемых жидкостей РІ зависимое РѕС‚ условий среды Рё продолжительности операций. Существующие методы Рё средства РЅРµ позволяют СЃ достаточной для практических целей точностью учесть Рё оценить РёС…, хотя исследованию отдельных РІРѕРїСЂРѕСЃРѕРІ, например изучению реологических свойств тампонажных растворов методами капиллярной вискозиметрии, уделяется РјРЅРѕРіРѕ внимания.  [4]

Для проведения гидравлического расчета должны быть заданы схема Рё профиль тепловой сети, указаны размещение источников теплоты Рё потребителей Рё расчетные нагрузки.  [5]

Для проведения гидравлического расчета новых стальных труб следует принимать то значение удельного сопротивления, которое соответствует скорости движения РІРѕРґС‹ v — I Рј / СЃ, СЃ ведением РїСЂРё РґСЂСѓРіРёС… значениях скоростей поправки РЅР° неквадратичность зависимости потерь напора РѕС‚ расхода.  [6]

РџРѕСЂСЏРґРѕРє проведения гидравлического расчета трубопроводов сжиженных углеводородных газов РїСЂРё РёС… проектировании может быть РїСЂРёРЅСЏС‚ следующим.  [7]

Перед проведением гидравлического расчета сеть трубопроводов разбивается на расчетные участки.

Совет

Расчетным участком называют отрезок трубопровода между двумя ответвлениями; на протяжении его не изменяются диаметр трубопровода и расход теплоносителя.

Гидравлический расчет проводится РїРѕ определенному расчетному расходу теплоносителя Рё заданному удельному линейному падению давления.  [8]

РџСЂРё проведении гидравлического расчета определяют следующие параметры: необходимую интенсивность подачи промывочной жидкости; режим течения жидкости РІ зависимости РѕС‚ скорости движения; гидравлические сопротивления движению жидкости РїРѕ характерным участкам; суммарные гидравлические сопротивления; гидравлическую мощность Р±СѓСЂРѕРІРѕРіРѕ насоса.  [9]

При проведении гидравлических расчетов водопроводной сети следует обращать внимание на правильность выбора места расчетных пожаров.

Обычно Р·Р° точку пожара РІ системах РЅРёР·РєРѕРіРѕ давления принимают наиболее удаленный Рё высокорасположенный РѕС‚ источника пожарный гидрант, Р° РІ системах высокого давления — наиболее удаленное Рё высокое здание.

При очень сложном рельефе местности и сложной конфигурации водопроводной сети трудно определить точку расчетного пожара.

Какая из точек будет диктующей: менее удаленная от источника питания, но расположенная выше, или более удаленрая, но расположенная ниже. В этих случаях диктующую точку определяют прикидочным расчетом.

РљРѕРіРґР° расчет ведут РЅР° несколько пожаров, РёС… намечают РІ разных районах объекта, РЅРѕ таким образом, чтобы РІСЃРµ основные магистральные линии сети были проверены РЅР° РїСЂРѕРїСѓСЃРє пожарных расходов.  [10]

Обратите внимание

РћСЃРЅРѕРІРЅРѕР№ задачей РїСЂРё проведении гидравлических расчетов трубопроводов для смесей нефтей является достаточно надежный РїРѕРґР±РѕСЂ реологической модели. Зная реологическую модель смеси, далее определяют потери РЅР° трение Рё число насосных станций.  [12]

РќР° практике РїСЂРё проведении гидравлических расчетов магистральных нефтепроводов РїСЂРё неизотермическом режиме часто используют приближенные методы.  [13]

Согласно / 51 при проведении гидравлических расчетов продук-топроводов, транспортирующих газожидкостные смеси, непременным условием является учет профиля трассы.

Р’ этой СЃРІСЏР·Рё гидравлический расчет выполняется РїРѕ эквивалентной трассе, представляющей СЃРѕР±РѕР№ последовательность прямолинейных восходящих Рё опускных участков, построенной РёР· условия равнозначности СЃ гидравлической точки зрения реальной Рё эквивалентной трасс.  [14]

Согласно 15 / при проведении гидравлических расчетов продук-топроводов, транспортирующих газожидкостные смеси, непременным условием является учет профиля трассы.

Р’ этой СЃРІСЏР·Рё гидравлический расчет выполняется РїРѕ эквивалентной трассе, представляющей СЃРѕР±РѕР№ последовательность прямолинейных восходящих Рё опускных участков, построенной РёР· условия равнозначности СЃ гидравлической точки зрения реальной Рё эквивалентной трасс.  [15]

Страницы:      1    2    3

Источник: https://www.ngpedia.ru/id325545p1.html

Основы гидравлики



Трубопроводами в народном хозяйстве называют искусственно созданные сооружения, предназначенные для транспортировки жидких, газообразных или твердых веществ, либо их смесей за счет разницы давлений в поперечных сечениях трубы.

В зависимости от назначения и типа транспортируемого вещества трубопроводы подразделяют на водопроводы, водовыпуски, водостоки (дренажи), канализацию, газопроводы, воздухопроводы, паропроводы, теплопроводы, кислородопроводы, аммиакопроводы, нефтепроводы, мазутопроводы, гидротранспорт полезных ископаемых, пневматическую почту и некоторые другие.

В гидравлике при расчете трубопроводов их подразделяют на короткие и длинные. Такое деление является условным, и основано на величине потерь напора при перемещении жидкости по трубопроводу.

Важно

В длинных трубопроводах потери напора по длине значительно превышают местные потери напора, а в коротких трубопроводах эти потери соизмеримы между собой.

Принято считать, что при длине l < 50 м трубопровод является коротким, а при l > 100 м – трубопровод длинный.


При l = 50…100 м, в зависимости от соотношения потерь напора, трубопровод может быть длинным либо коротким.

***

Гидравлический расчет короткого трубопровода

Короткие трубопроводы рассчитывают непосредственно по уравнению Бернулли, представленному в следующем виде:

Читайте также:  Опоры для прокладки трубы в футляре: характеристики деталей и особенности монтажа магистралей в защитном кожухе

Нн + БнQ2 = Нк + БкQ2 + ΣS0Q2l + Σ Б ξ Q2    (1).

Здесь Б = 8/gπ2dр2 – величина, зависящая от расчетного диаметра трубы и определяемая по специальным справочным таблицам;
ξ – коэффициент местных сопротивлений;
S0 = 8λ/π2gd5 – удельное сопротивление трубы;
l – длины участков трубопроводов;

Нн и Нк – пьезометрические напоры в начале и конце трубопровода, определяемые по формуле:

Н = z + p/ρg,

где:
z – геодезическая отметка какой-либо точки трубопровода;
р – избыточное давление в этой точке;
р/ρg – пьезометрическая высота (свободный напор).

При расчетах трубопроводов применяют различные эмпирические зависимости и формулы, полученные экспериментально-опытным путем, позволяющие определить коэффициент гидравлического трения:

— для гидравлически гладких труб – формулу Блазиуса: λ = 0,3164/Re0,25    (Re — число Рейнольдса);

— для полиэтиленовых водопроводных труб, работающих в области гидравлически гладких труб – формулу Шевелева: λ = 0,0134/(dv)0,226,   (здесь v – скорость потока);

— для вполне шероховатых труб применяют формулу Шифринсона: λ = 0,11(k/d)0,25,   (k – средняя высота выступов шероховатости на внутренней поверхности трубы).

Удельные сопротивления S0кв для бывших в эксплуатации стальных и чугунных труб, работающих при скоростях потока v ≥ 1,2 м/с (квадратичная область сопротивления), определяются с учетом гидравлического коэффициента трения λ по формулам Ф. А.

Шевелева.
Значение удельных сопротивлений можно найти в специальных справочных таблицах.

Совет

При скоростях потока v < 1,2 м/с (переходная область сопротивления) удельные сопротивления S0 определяют по формуле[/su_box]

S0 = S0кв θ ,

где θ – поправочный коэффициент, определяемый в зависимости от скорости.

При расчетах коротких трубопроводов из уравнения Бернулли (1) определяют (в зависимости от условий задачи) расход Q или необходимый напор Нн в начале трубопровода, либо диаметр трубопровода d и т. д.

***



Длинные трубопроводы рассчитываются, как и короткие, по уравнению Бернулли, но местными потерями и скоростными напорами в них пренебрегают ввиду их относительной малости.
Для большей точности местные потери напора можно приближенно учесть, приняв расчетную длину трубопровода на 5-10 % больше фактической.
С учетом этого уравнение (1) принимает вид:

Нн – Нк = ΣS0Q02l     (2).

Знак суммы Σ указывает, что если трубопровод состоит из нескольких последовательных участков, то потери напора на них складываются. Для одиночного трубопровода формула (2) упрощается:

Нн – Нк = S0Q02l    (3).

Для расчета длинных трубопроводов применяется также формула

Q = К √ip    (4),

где:
ip = (Нн – Нк)/l – пьезометрический уклон;
К – расходная характеристика, зависящая, как и удельное сопротивление S0, в основном, от диаметра и материала трубы, а также от скорости потока.

Так как S0 = 1/К, то формулы (3) и (4) равнозначны.

Значения расходных характеристик Ккв стальных, бетонных и железобетонных трубопроводов, имеющих разный коэффициент шероховатости, приводятся в справочных таблицах. При этом потери напора для труб, работающих в квадратичной области сопротивления (при скорости потока v ≥ 1,2 м/с) определяются по формуле:

Нн – Нк = Q2l/K2.

При работе стальных труб в переходной области сопротивления (v < 1,2 м/с) расходная характеристика определяется по формуле:

К = Ккв / √ θ .

При расчете простых длинных трубопроводов обычно необходимо определить одну из неизвестных величин, чаще всего начальный напор Нн, расход Q или диаметр трубы d, которые легко вычислить по формуле (3) или (4).

Обратите внимание

При проектировании новых трубопроводов могут быть неизвестны две величины – напор в начальной точке и диаметр трубы. В этом случае задаются диаметром трубопровода (в зависимости от требуемого расхода) и рекомендуемыми из экономических соображений предельными скоростями vпр:

d = 1,13√(Q/vпр).

Предельные скорости потока (в зависимости от величины расхода и материала труб) приводятся в справочных таблицах. Для ориентировочных расчетов можно принимать средние значения предельных скоростей для данного материала труб.

Если на участке трубопровода производится непрерывная раздача воды по пути, то расчетный расход увеличивается:

Qр = Qтр + 0,55Qпут,

где:
Qтр – транзитный расход, проходящий по всей длине трубопровода;
Qпут – путевой расход (непрерывная раздача) на участке: Qпут = q0l, где q0 – удельный путевой расход на 1 м длины трубопровода.

Трубопроводы, имеющие параллельные ответвления с общими узловыми точками в их конце и начале, рассчитывают с учетом того, что потери напора по всем участкам одинаковы.
Расходы в параллельных ветвях определяются при помощи системы уравнений, которая приведена на рис. 1.
Потери напора для таких трубопроводов определяются как потери напора в одной из параллельных ветвей.

Если в начале трубопровода напор создается насосом, то его мощность определяется по формуле:

Nнас = ρgQHнас/103η, (кВт, если ρ – в кг/м3, а Q – в м3/с),

где:
η – коэффициент полезного действия насоса;
Ннас = h + ΣS0Q2l – полный напор насоса, состоящий из геометрической высоты подъема h = Hсв + zк – zн (здесь Нсв = рк/ρg – свободный напор в конце трубопровода) и суммы потерь напора на всасывающем и нагнетательном трубопроводах.

Если высота всасывания и потери напора во всасывающей трубе незначительны, то напор насоса можно принимать как сумму высоты нагнетания и потерь напора при нагнетании.

***

Гидравлический удар



Главная страница

Специальности

Учебные дисциплины

Олимпиады и тесты

Источник: http://k-a-t.ru/gidravlika/8_truby/index.shtml

Гидравлический расчет безнапорных трубопроводов

12 мая 2016 г.

В основе гидравлических расчетов безнапорных (самотечных) трубопроводов лежит условие соблюдения установившегося равномерного движения воды в трубах по двум основным формулам:

  • формула неразрывности потока

g=ω·V

V=C·√R·i

где q — расход жидкости, м3/с; ω — площадь живого сечения, м2; V — скорость движения жидкости, м/с; R — гидравлический радиус, м; i — гидравлический уклон (равный уклону трубы при установившемся равномерном движении); С — коэффициент Шези, зависящий от гидравлического радиуса и шероховатости смоченной поверхности трубопровода, м0,5/с.

Основная трудность при проведении гидравлических расчетов заключается в определении коэффициента Шези.

Рядом исследователей предложены собственные универсальные формулы (эмпирические или полуэмпирические зависимости), в той или иной степени описывающие зависимость коэффициента Шези от гидравлического радиуса, величины шероховатости стенок трубопровода и других факторов:

  • формула Н, Н. Павловского:

С=1/n·Ry

где п — относительная шероховатость стенки трубы; для определения показателя степени у используется формула

у=2,5·√n-0,13-0,75·√R·(√n-0,1)

С=1/n·R1/6

  • формула А. Д. Альтшуля и В. А. Лудова для определения у.

у=0,57-0,22·lgC

  • формула А. А. Карпинского:

у=0,29-0,0021·С.

На базе указанных и других аналогичных зависимостей построены таблицы гидравлического расчета и номограммы, которые позволяют инженерам-проектировщи- кам проводить гидравлический расчет безнапорных сетей и каналов из различных материалов. Расчет безнапорных самотечных трубопроводов рекомендуется производить с использованием известной формулы Дарси — Вейсбаха:

i=λ/4R · V2/2g

где λ — коэффициент гидравлического трения; g — ускорение свободного падения, м/с2.

Коэффициент Шези можно определить как:

С=√8g/λ

Наиболее апробированными и лучше других согласующимися с опытными данными, из отмеченных ранее формул, полученных отечественными исследователями, являются формулы Н. Н. Павловского.

Важно

Справедливость этих формул подтверждена и проверена инженерной практикой, и не вызывает сомнений возможность дальнейшего их использования для гидравлического расчета безнапорных сетей из керамики, бетона и кирпича, т. е.

тех материалов, где коэффициент шероховатости п составляет порядка 0,013-0,014, а также полимерных с определенными поправочными коэффициентами.

Современные тенденции широкого использования новых труб из различных материалов (в том числе полимерных) в период ремонта и реконструкции старых сетей приводят к тому, что водоотводящая сеть городов из года в год становится все более разнородной, что сказывается на трудностях оценки гидравлических показателей, а также на затруднении эксплуатации, так как для каждого разнородного участка трубопровода должны применяться соответствующие методы обслуживания (например, прочистки и т. д.).

Для трубопроводов из новых материалов на сегодняшний день пока нет строгих гидравлических зависимостей изменения коэффициентов С и λ, Более того, каждый производитель новых типов труб обнародует свои, подчас необъективные критерии оценки гидравлической совместимости труб из различных материалов.

Задача еще более усугубляется, когда таких материалов много и каждый из них находит свою нишу при ремонте сетей. В результате появляется некое подобие сети с «заплатками». Это не исключает гидравлического дисбаланса, т. е.

возможных негативных тенденций, связанных с подтоплением в местах стыковки труб или на определенных расстояниях от мест стыковки.

Таким образом, проектировщику на каждый вид материала трубопровода или защитного покрытия желательно иметь унифицированные зависимости изменения гидравлических характеристик, т. е. результаты натурных экспериментов по определению коэффициентов Шези, Дарси и других параметров труб из различных материалов. Отсюда в качестве вывода надо констатировать значимость проведения экспериментальных гидравлических исследований. Полученные в период экспериментов на одном диаметре опытные значения коэффициента Шези могут являться критерием приближенного гидравлического подобия для перехода на другие диаметры.

Источник: http://ros-pipe.ru/tekh_info/tekhnicheskie-stati/proektirovanie-truboprovodnykh-setey/gidravlicheskiy-raschet-beznapornykh-truboprovodov/

Расчет и подбор трубопроводов. Оптимальный диаметр трубопровода

Трубопроводы для транспортировки различных жидкостей являются неотъемлемой частью агрегатов и установок, в которых осуществляются рабочие процессы, относящиеся к различным областям применения.

При выборе труб и конфигурации трубопровода большое значение имеет стоимость как самих труб, так и трубопроводной арматуры. Конечная стоимость перекачки среды по трубопроводу во многом определяется размерами труб (диаметр и длина).

Расчет этих величин осуществляется с помощью специально разработанных формул, специфичных для определенных видов эксплуатации.

Совет

Труба – это полый цилиндр из металла, дерева или другого материала, применяемый для транспортировки жидких, газообразных и сыпучих сред. В качестве перемещаемой среды может выступать вода, природный газ, пар, нефтепродукты и т.д. Трубы используются повсеместно, начиная с различных отраслей промышленности и заканчивая бытовым применением.

Для изготовления труб могут использоваться самые разные материалы, такие как сталь, чугун, медь, цемент, пластик, такой как АБС-пластик, поливинилхлорид, хлорированный поливинилхлорид, полибутелен, полиэтилен и пр.

Основными размерными показателями трубы являются ее диаметр (наружный, внутренний и т.д.) и толщина стенки, которые измеряются в миллиметрах или дюймах.

Также используется такая величина как условный диаметр или условный проход – номинальная величина внутреннего диаметра трубы, также измеряемая в миллиметрах (обозначается Ду) или дюймах (обозначается DN).

Величины условных диаметров стандартизированы и являются основным критерием при подборе труб и соединительной арматуры.

Соответствие значений условного прохода в мм и дюймах:

Трубе с круглым поперечным сечением отдают предпочтение перед другими геометрическими сечениями по ряду причин:

  • Круг обладает минимальным соотношением периметра к площади, а применимо к трубе это означает, что при равной пропускной способности расход материала у труб круглой формы будет минимальным в сравнении с трубами другой формы. Отсюда же следует и минимально возможные затраты на изоляцию и защитное покрытие;
  • Круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды с гидродинамической точки зрения. Также за счет минимально возможной внутренней площади трубы на единицу ее длины достигается минимизация трения между перемещаемой средой и трубой.
  • Круглая форма наиболее устойчива к воздействию внутренних и внешних давлений;
  • Процесс изготовления труб круглой формы достаточно прост и легкоосуществим.
Читайте также:  Водогазопроводные электросварные трубы стальные

Трубы могут сильно отличаться по диаметру и конфигурации в зависимости от назначения и области применения. Так магистральные трубопроводы для перемещения воды или нефтепродуктов способны достигать почти полуметра в диаметре при достаточно простой конфигурации, а нагревательные змеевики, также представляющие собой трубу, при малом диаметре имеют сложную форму с множеством поворотов.

Невозможно представить какую-либо отрасль промышленности без сети трубопроводов. Расчет любой такой сети включает подбор материала труб, составление спецификации, где перечислены данные о толщине, размере труб, маршруте и т.д.

Сырье, промежуточный продукт и/или готовый продукт проходят производственные стадии, перемещаясь между различными аппаратами и установками, которые соединяются при помощи трубопроводов и фитингов.

Обратите внимание

Правильный расчет, подбор и монтаж системы трубопроводов необходим для надежного осуществления всего процесса, обеспечения безопасной перекачки сред, а также для герметизации системы и недопущения утечек перекачиваемого вещества в атмосферу.

Не существует единой формулы и правил, которые могли бы быть использованы для подбора трубопровода для любого возможного применения и рабочей среды.

В каждой отдельной области применения трубопроводов присутствует ряд факторов, требующих учета и способных оказать значительное влияние на предъявляемые к трубопроводу требования.

Так, например, при работе со шламом, трубопровод большого размера не только увеличит стоимость установки, но также создаст рабочие трудности.

Обычно трубы подбирают после оптимизации расходов на материал и эксплуатационных расходов. Чем больше диаметр трубопровода, то есть выше изначальное инвестирование, тем ниже будет перепад давления и соответственно меньше эксплуатационные расходы.

И наоборот, малые размеры трубопровода позволят уменьшить первичные затраты на сами трубы и трубную арматуру, но возрастание скорости повлечет за собой увеличение потерь, что приведет к необходимости затрачивать дополнительную энергию на перекачку среды.

Нормы по скорости, фиксированные для различных областей применения, базируются на оптимальных расчетных условиях. Размер трубопроводов рассчитывают, используя эти нормы с учетом областей применения.

Проектирование трубопроводов

При проектировании трубопроводов за основу берутся следующие основные конструктивные параметры:

  • требуемая производительность;
  • место входа и место выхода трубопровода;
  • состав среды, включая вязкость и удельный вес;
  • топографические условия маршрута трубопровода;
  • максимально допустимое рабочее давление;
  • гидравлический расчет;
  • диаметр трубопровода, толщина стенок, предел текучести материала стенок при растяжении;
  • количество насосных станций, расстояние между ними и потребляемая мощность.

Надежность трубопроводов

Надежность в конструировании трубопроводов обеспечивается соблюдением надлежащих норм проектирования.

Также обучение персонала является ключевым фактором обеспечения длительного срока службы трубопровода и его герметичности и надежности.

Постоянный или периодический контроль работы трубопровода может быть осуществлен системами контроля, учёта, управления, регулирования и автоматизации, персональными приборами контроля на производстве, предохранительными устройствами.

Дополнительное покрытие трубопровода

Коррозионно-стойкое покрытие наносят на наружную часть большинства труб для предотвращения разрушающего действия коррозии со стороны внешней среды.

В случае перекачивая коррозионных сред, защитное покрытие может быть нанесено и на внутреннюю поверхность труб.

Перед вводом в эксплуатацию все новые трубы, предназначенные для транспортировки опасных жидкостей, проходят проверку на дефекты и протечки.

Основные положения для расчета потока в трубопроводе

Характер течения среды в трубопроводе и при обтекании препятствий способен сильно отличаться от жидкости к жидкости. Одним из важных показателей является вязкость среды, характеризуемая таким параметром как коэффициент вязкости.

Ирландский инженер-физик Осборн Рейнольдс провел серию опытов в 1880г, по результатам которых ему удалось вывести безразмерную величину, характеризующую характер потока вязкой жидкости, названную критерием Рейнольдса и обозначаемую Re.

Re = (v·L·ρ)/μ

где: ρ — плотность жидкости; v — скорость потока; L — характерная длина элемента потока;

μ – динамический коэффициент вязкости.

Важно

То есть критерий Рейнольдса характеризует отношение сил инерции к силам вязкого трения в потоке жидкости. Изменение значения этого критерия отображает изменение соотношения этих типов сил, что, в свою очередь, влияет на характер потока жидкости. В связи с этим принято выделять три режима потока в зависимости от значения критерия Рейнольдса. При Re

Источник: http://intech-gmbh.ru/pipelines_calc_and_select/

Гидравлический расчет трубопроводов

Трубы, соединяющие между собой различные аппараты химических установок. С помощью них происходит передача веществ между отдельными аппаратами. Как правило, несколько отдельных труб с помощью соединений создают единую трубопроводную систему.

Трубопровод – это система труб, объединенных вместе с помощью соединительных элементов, применяемая для транспортировки химических веществ и иных материалов. В химических установках для перемещения веществ, как правило, используются закрытые трубопроводы. Если речь идет о замкнутых и изолированных деталях установки, то они также относится к трубопроводной системе или сети.

В состав замкнутой трубопроводной системы могут входить:

  1. Трубы.
  2. Соединительные элементы труб.
  3. Герметизирующие уплотнения, соединяющие два разъемных участка трубопровода.

Все вышеперечисленные элементы изготавливаются отдельно, после чего соединяются в единую трубопроводную систему. Помимо этого трубопроводы могут быть оснащены обогревом и необходимой изоляцией, изготовленной из различных материалов.

Выборе размера труб и материалов для из изготовления осуществляется на основе технологических и конструктивных требований, предъявляемых в каждом конкретном случае. Но для стандартизации размеров труб была проведена их классификация и унификация. Основным критерием стало допустимое давление при котором возможна эксплуатация трубы.

Условный проход DN

Условный проход DN (номинальный диаметр) – это параметр, который используется в системах трубопровода как характеризующий признак, с помощью которого происходит подгонка деталей трубопровода, таких как трубы, арматура, фитинги и другие.

Номинальный диаметр является безразмерной величиной, однако численно приблизительно равен внутреннему диаметру трубы. Пример обозначения условного прохода: DN 125.

Так же условный проход не обозначается на чертежах и не заменяет собой реальные диаметры труб. Он примерно соответствует диаметру в свету у определенных частей трубопровода (рис. 1.1).

Если говорить о числовых значениях условных переходах, то они выбраны таким образом, что пропускная способность трубопровода увеличивается в диапазоне от 60 до 100% при переходе от одного условного прохода к последующему.

Рис. 1.1 Условный диаметр

Общепринятые номинальные диаметры:

3, 4, 5, 6, 8, 10, 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000.

Размеры этих условных проходов установлены с расчетом на то, чтобы не возникало проблем с припасовкой деталей друг к другу. Определения номинальный диаметр на основе значения внутреннего диаметра трубопровода, выбирается то значение условного прохода, которое ближе всего находится к диаметру трубы в свету.

Номинальное давление PN

Номинальное давление PN – величина, соответствующая максимальному давлению перекачиваемой среды при 20 °C, при котором возможна длительная эксплуатация трубопровода, имеющего заданные размеры.

Номинальное давление является безразмерной величиной.

Как и номинальный диаметр, номинальное давление было градуировано на основе практики эксплуатации накопленного опыта (табл. 1.1).

Номинальное давление для конкретного трубопровода выбирается на основе реально создаваемого в нем давления, путем выбора ближайшего большего значения.

Совет

При этом фитинги и арматура в этом трубопроводе также должны соответствовать такой же ступени давления.

Толщина стенок трубы рассчитывается исходя из номинального давления и должна обеспечивать работоспособность трубы при значении давления равном номинальному (табл. 1.1).

Допустимое избыточное рабочее давление pe,zul

Номинальное давление используется только для рабочей температуры 20°C. С повышением температуры нагрузочные способности трубы снижаются. Вместе с этим соответственно снижается и допустимое избыточное давление. Значение pe,zul показывает максимальное избыточное давление, которое может быть в трубопроводной системе при повышении значения рабочей температуры (рис. 1.2).

Рис. 1.2 График допустимых избыточных давлений

При выборе материалов, которые будут использоваться для изготовления трубопроводов, берутся в расчет такие показатели, как характеристики среды, которая будет транспортироваться по трубопроводу и рабочее давление, предполагаемое в данной системе. Стоит так же учитывать возможность корродирующего воздействия со стороны перекачиваемой среды на материал стенок трубы.

Практически все трубопроводные системы и химические установки производятся из стали. Для общего применения в случае отсутствия высоких механических нагрузок и корродирующего действия для изготовления трубопроводом используется серый чугун или нелегированные конструкционные стали.

В случае более высокого рабочего давления и отсутствия нагрузок с коррозионно активным действием применяется трубопровод из улучшенной стали или с использованием стального литья.

Если корродирующее воздействие среды велико или к чистоте продукта предъявлены высокие требования, то трубопровод изготавливается из нержавеющей стали.

Если трубопровод должен быть устойчив к воздействию морской воды, то для его изготовления используются медно-никелевые сплавы. Также могут применяться алюминиевые сплавы и такие металлы как тантал или цирконий.

Все большее распространение в качестве материала трубопровода получают различные виды пластмасс, что обуславливается их высокой стойкостью к коррозии, малому весу и легкости в обработке. Такой материал подходит для трубопровода со сточными водами.

Фасонные части трубопровода

Трубопроводы, изготовленные из пластичных материалов пригодных для сварки, собираются на месте монтажа. К таким материалам можно отнести сталь, алюминий, термопласты, медь и т.д..

Для соединения прямых участков труб используются специально изготовленные фасонные элементы, например, колена, отводы, затворы и уменьшения диаметров (рис. 1.3).

Эти фитинги могут быть частью любого трубопровода.

Рис. 1.3 Фасонные элементы трубопровода

Для монтирования отдельных частей трубопровода и фитингов используются специальные соединения. Также используются для присоединения к трубопроводу необходимой арматуры и аппаратов.

Соединения выбираются (рис. 1.4) в зависимости от:

  1. материалов, которые используются для изготовления труб и фасонных элементов. Основной критерий выбора – возможность сварки.
  2. условий работы: низкого или высокого давления, а также низкой или высокой температуры.
  3. производственных требований, которые предъявляются к трубопроводной системе.
  4. наличия разъемных или неразъемных соединений в трубопроводной системе.
Рис. 1.4 Типы соединения труб

Геометрическая форма предметов может быть изменена как путем силового воздействия на них, так и при изменении их температуры.

Данные физические явления приводят к тому, что трубопровод, который монтируется в ненагруженном состоянии и без температурного воздействия, в процессе эксплуатации под давлением или воздействием температур претерпевает некоторые линейные расширения или сжатия, которые негативно сказываются на его эксплуатационных качествах.

В случае, когда нет возможности компенсировать расширение, происходит деформация трубопроводной системы. При этом могут возникнуть повреждения фланцевых уплотнений и тех мест соединения труб между собой.

Тепловое линейное расширение

При компоновке трубопроводов важно учитывать возможное изменение длины в результате повышения температуры или так называемого теплового линейного расширения, обозначаемого ΔL. Данное значение зависит от длины трубы, которая обозначается Lo и разности температур Δϑ =ϑ2-ϑ1 (рис. 1.5).

Читайте также:  Металлические круглые и профильные трубы: в чем их отличия и особенности

В вышеприведенной формуле а – это коэффициент теплового линейного расширения данного материала. Этот показатель равен величине линейного расширения трубы длиной 1 м при повышении температуры на 1°C.

Элементы компенсации расширения труб

Отводы труб

Благодаря специальным отводам, которые ввариваются в трубопровод, можно компенсировать естественное линейное расширение труб. Для этого используются компенсирующие U-образные, Z-образные и угловые отводы, а также лирные компенсаторы (рис. 1.6).

Рис. 1.6 Компенсирующие трубные отводы

Они воспринимают линейное расширение труб за счет собственной деформации. Однако такой способ возможен только с некоторыми ограничениями. В трубопроводах с высоким давлением для компенсации расширения используются колени под разными углами. Из-за давления, которое действует в таких отводах, возможно усиление коррозии.

Волнистые трубные компенсаторы

Данное устройство состоит из тонкостенной металлической гофрированной трубы, которая называется сильфоном и растягивается в направлении трубопровода (рис. 1.7).

Данные устройства устанавливаются в трубопровод. Предварительный натяг используется в качестве специального компенсатора расширения.

Рис. 1.7 Волнистый трубный компенсатор

Если говорить про осевые компенсаторы, то они способны компенсировать только те линейные расширения, которые происходят вдоль оси трубы. Чтобы избежать бокового смещения и внутреннего загрязнения используется внутреннее направляющее кольцо.

Для того чтобы защитить трубопровод от внешних повреждений, как правило, используется специальная облицовка.

Компенсаторы, которые не содержат внутреннее направляющее кольцо, поглощают боковые сдвиги, а также вибрацию, которая может исходить от насосов.

Изоляция труб

В том случае, если по трубопроводу перемещается среда с высокой температурой, необходима его изоляция во избежание потери тепла. В случае перемещения по трубопроводу среды с низкой температурой изоляцию применяют для предотвращения ее нагрева внешней средой. Изоляция в таких случаях осуществляется с помощью специальных изоляционных материалов, которые размещаются вокруг труб.

В качестве таких материалов, как правило, используются:

  1. При низких температурах до 100°C используются жесткие пенопласты, например, полистирол или полиуретан.
  2. При средних температурах около 600°C используются фасонные оболочки или минеральное волокно, например, каменная шерсть или стеклянный войлок.
  3. При высоких температурах в районе 1200°C – керамическое волокно, например, глиноземное.

Трубы, условный проход которых ниже DN 80, а толщина слоя изоляции меньше 50 мм, как правило, изолируются при помощи изоляционных фасонных элементов. Для этого две оболочки кладутся вокруг трубы и скрепляются металлической лентой, а после этого закрываются жестяным кожухом (рис. 1.8).

Рис. 1.8 Теплоизоляция при помощи фасонных элементов

Трубопроводы, которые имеют условный проход больше DN 80, должны снабжаться теплоизоляцией с нижним каркасом (рис. 1.9). Такой каркас состоит из зажимных колец, распорок, а также металлической облицовки, изготовленной из оцинкованной мягкой стали или нержавеющей листовой стали. Между трубопроводом и металлическим кожухом пространство заполняется изоляционным материалом.

Рис. 1.9 Теплоизоляция с нижним каркасом

Толщина изоляции рассчитывается путем определения затрат на его изготовление, а также убытков, которые возникают из-за потери тепла, и составляет от 50 до 250 мм.

Теплоизоляция должна наноситься по всей длине трубопроводной системы, включая зоны отводов и колен. Очень важно следить, чтобы не возникали незащищенные места, которые смогут стать причиной тепловых потерь.

Фланцевые соединения и арматура должны снабжаться фасонными изоляционными элементами (рис. 1.10).

Обратите внимание

Это обеспечивает беспрепятственный доступ к месту соединения без необходимости снимать изоляционный материал со всей трубопроводной системы в том случае, если произошло нарушение герметичности.

Рис. 1.10 Теплоизоляция фланцевого соединения

В том случае, если изоляция трубопроводной системы выбрана правильно, решается множество задач, таких как:

  1. Избегание сильного падения температуры в протекающей среде и, как следствие, экономия энергии.
  2. Предотвращение падения температуры в газопроводных системах ниже точки росы. Таким образом, удается исключить образование конденсата, который может привести к значительным коррозионным разрушениям.
  3. Избегание выделения конденсата в паровых трубопроводах.

Источник: http://ence-pumps.ru/truboprovody/

Методы гидравлического расчета системы отопления

Доброго всем времени суток! Сегодня я опишу как нужно делать гидравлический расчет системы отопления и что это вообще такое. Начнем с последнего вопроса.

Что такое гидравлический расчет и зачем он нужен?

Гидравлический расчет (далее ГР) — это математический алгоритм, в результате выполнения которого мы получим необходимый диаметр труб в данной системе (имеется ввиду внутренний диаметр).

Кроме того, будет понятно какой нам необходимо использовать циркуляционный насос — определяется напор и расход насоса. Все это даст возможность сделать систему отопления экономически оптимальной.

Производится он на основании законов гидравлики — специального раздела физики, посвященного движению и равновесию в жидкостях.

Теория гидравлического расчета системы отопления

Теоретически ГР отопления основан на следующем уравнении:

ΔP = R•l + z

Данное равенство справедливо для конкретного участка. Расшифровывается это уравнение следующим образом:

  • ΔP — линейные потери давления.
  • R — удельные потери давления в трубе.
  • l — длина труб.
  • z — потери давления в отводах, запорной арматуре.

Из формулы видно, что потери давления тем больше, чем она длиннее и чем больше в ней отводов или других элементов, уменьшающих проход или меняющих направление потока жидкости. Давайте выведем чему равны R и z. Для этого рассмотрим еще одно уравнение, показывающее потери давления от трения об стенки труб:

ΔPтрение = (λ/d)*(v²ρ/2)

Это уравнение Дарси — Вейсбаха. Давайте расшифруем его:

  • λ — коэффициент, зависящий от характера движения трубы.
  • d — внутренний диаметр трубы.
  • v — скорость движения жидкости.
  • ρ — плотность жидкости.

Из этого уравнения устанавливается важная зависимость — потери давления на трение тем меньше, чем больше внутренний диаметр труб и меньше скорость движения жидкости. Причем, зависимость от скорости здесь квадратичная. Потери в отводах, тройниках и запорной арматуре определяются по другой формуле:

ΔPарматура = ξ*(v²ρ/2)

Здесь:

  • ξ — коэффициент местного сопротивления (далее КМС).
  • v — скорость движения жидкости.
  • ρ — плотность жидкости.

Из данного уравнения также видно, что падение давления возрастает с увеличением скорости жидкости. Также, стоит сказать, что в случае применения низкозамерзающего теплоносителя также будет играть важную роль его плотность — чем она выше тем тяжелее циркуляционному насосу. Поэтому при переходе на «незамерзайку» возможно придется заменить циркуляционный насос.

Из всего вышеизложенного выведем следующее равенство:

ΔP =ΔPтрение +ΔPарматура=((λ/d)(v²ρ/2)) + (ξ(v²ρ/2)) = ((λ/α)l(v²ρ/2)) + (ξ*(v²ρ/2)) =  R•l + z;

Отсюда получаем следующие равенства для R и z:

R = (λ/α)*(v²ρ/2) Па/м;

z = ξ*(v²ρ/2) Па;

Теперь давайте разберемся в том, как используя эти формулы рассчитать гидравлическое сопротивление.

Как на практике считают гидравлическое сопротивление системы отопления

Часто инженерам приходится рассчитывать системы отопления на больших объектах. В них большое количество приборов отопления и много сотен метров труб, но считать все равно нужно. Ведь без ГР не получится правильно подобрать циркуляционный насос. К тому же ГР позволяет установить еще до монтажа будет ли работать все это.

Для упрощения жизни проектировщикам разработаны различные численные и программные методы определения гидравлического сопротивления. Начнем от ручного к автоматическому.

Приближенные формулы расчета гидравлического сопротивления

Для определения удельных потерь на трение в трубопроводе используется следующая приближенная формула:

R = 5104 v1.9 /d1,32   Па/м;

Здесь сохраняется практически квадратичная зависимость от скорости движения жидкости в трубопроводе. Данная формула справедлива для скоростей 0,1-1,25 м/с.

Если у вас известен расход теплоносителя, то есть приближенная формула для определения внутреннего диаметра труб:

d = 0.75√G  мм;

Получив результат необходимо воспользоваться следующей таблицей для получения диаметра условного прохода:

Наиболее трудоемким будет расчет местных сопротивлений в фитингах, запорной арматуре и приборах отопления. Ранее я упоминал коэффициенты местного сопротивления ξ, их выбор делается по справочным таблицам. Если с углами и запорной арматурой все ясно, то вот выбор КМС для тройников превращается в целое приключение. Чтобы стало понятно о чем я говорю, посмотрим на следующую картинку:

По картинке видно, что у нас имеется целых 4 вида тройников, для каждого из которых будут свои КМС местного сопротивления. Трудность тут будет состоять в правильном выборе направления тока теплоносителя. Для тех кому очень нужно, приведу здесь таблицу с формулами из книги О.Д. Самарина «Гидравлические расчеты инженерных систем»:

Эти формулы можно перенести в MathCAD или любую другую программу и рассчитать КМС с погрешностью до 10 %. Формулы применимы для скоростей движения теплоносителя от 0,1 до 1,25 м/с и для труб с диаметром условного прохода до 50 мм. Такие формулы вполне подойдут для отопления коттеджей и частных домов. Теперь рассмотрим некоторые программные решения.

Программы для расчета гидравлического сопротивления в системах отопления

Сейчас в интернете можно найти много различных программ для расчета отопления платных и бесплатных. Понятное дело, что платные программы обладают более мощным функционалом, чем бесплатные и позволяют решать более широкий круг задач.

Такие программы имеет смыл приобретать профессиональным инженерам-проектировщикам. Обывателю, который хочет самостоятельно посчитать систему отопления в своем доме будет вполне достаточно бесплатных программ.

Ниже приведу список наиболее распространенных программных продуктов:

  • Valtec.PRG — бесплатная программа для расчета отопления и водоснабжения. Есть возможности расчета теплых полов и даже теплых стен
  • HERZ — целое семейство программ. С их помощью можно рассчитывать как однотрубные так и двухтрубные системы отопления. Программа имеет удобное графическое представление и возможность разбивки на поэтажные схемы. Имеется возможность расчета тепловых потерь
  • Поток — отечественная разработка, представляющая из себя комплексную САПР, которая может проектировать инженерные сети любой сложности. В отличии от предыдущих, Поток — платная программа. Поэтому простой обыватель вряд ли станет ей пользоваться. Она предназначена для профессионалов.

Есть еще несколько других решений. В основном от производителей труб и фитингов. Производители затачивают программы для расчета под свои материалы и тем самым в какой-то степени вынуждают покупать их материалы. Это такой маркетинговый ход и в нем нет ничего плохого.

 Итоги статьи

Расчет гидравлического сопротивления системы отопления дело прямо-таки не самое простое и требующее опыта. Ошибки здесь могут стоить очень дорого. Отдельные ветки и стояки могут не работать. По ним просто не будет циркуляции. По этой причине лучше чтобы этим занимались люди с образованием и опытом таких работ.

Сами монтажники практически никогда не занимаются расчетами. Они везде стремятся делать одни и те же решения, которые работали у них ранее. Но то, что работало у другого человека не обязательно будет работать у вас. По этому настоятельно рекомендую обратиться к инженеру и сделать полноценный проект.

На этом пока все, жду ваших вопросов в комментариях.

Источник: https://znayteplo.ru/nachinayushhemu-santexniku/metody-gidravlicheskogo-rascheta-sistemy-otopleniya/

Ссылка на основную публикацию
Adblock
detector